Ia-afferent input to motoneurons during shortening and lengthening muscle contractions in humans.
نویسندگان
چکیده
The central nervous system employs different strategies to execute specific motor tasks. Because afferent feedback during shortening and lengthening muscle contractions differs, the neural strategy underlying these tasks may be quite distinct. Cortical drive may be adjusted or afferent input regulated. The exact mechanisms are not clear. Here, we examine the control of synaptic transmission across the Ia synapse during shortening and lengthening muscle contractions. Subjects were instructed to maintain isolated activity in a single tibialis anterior (TA) motor unit while muscle length was varied from flexion to extension and back. At a fixed interval after a firing of the active motor unit, a single electrical stimulus was applied to the common peroneal nerve to activate Ia afferents from the TA muscle. We investigated the stimulus-induced change in firing probability of 19 individual low-threshold TA motor units during shortening and lengthening contractions. Any change in firing probability depends on both pre- and postsynaptic mechanisms. In this experiment, motoneuron firing rate was similar during both contraction types. There was no difference in the firing probability between shortening and lengthening contractions (0.23 +/- 0.03 and 0.20 +/- 0.02, respectively). We suggest that there is no contraction type-specific control of Ia input to the motoneurons during shortening and lengthening muscle contractions. Cortical adjustments may have occurred.
منابع مشابه
Modulation of soleus H-reflex during shortening and lengthening muscle actions in young and older adults.
The H-reflex is dependently modulated during isometric and anisometric muscle actions. However, the manner of the H-reflex modulation during dynamic muscle movements in relation to ageing is less stated in the literature. This study was designed to investigate the effects of ageing on soleus (SOL) H-reflex modulation during dynamic muscle actions. Twenty young (24 ± 4 years of age) and 20 older...
متن کاملSpindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects.
Skeletofusimotor (beta) motoneurons innervate both extrafusal muscle units and muscle fibers within muscle spindle stretch receptors. By receiving excitation from group Ia muscle spindle afferents and driving the muscle spindle afferents that excite them, they form a positive feedback loop of unknown function. To study it, we developed a computationally efficient model of group Ia afferent beha...
متن کاملIncreased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury.
This study of chronic incomplete spinal cord injury (SCI) subjects investigated patterns of central motor drive (i.e., central activation) of the plantar flexors using interpolated twitches, and modulation of soleus H-reflexes during lengthening, isometric, and shortening muscle actions. In a recent study of the knee extensors, SCI subjects demonstrated greater central activation ratio (CAR) va...
متن کاملVastus lateralis surface and single motor unit EMG during shortening, lengthening and isometric contractions corrected for mode dependent strength differences
Knee extensor neuromuscular activity was investigated during isometric (60° knee angle), shortening and lengthening contractions (50-70°, 10° ·s-1) corrected for force-velocity related differences in intrinsic muscle strength. However, during dynamic contractions additional factors such as shortening induced force losses and lengthening induced force gains may affect muscle strength and thereby...
متن کاملPhantom reflexes: Muscle contractions at a frequency not physically present in the input stimuli
In the motor system, the periodic stimulation of one Ia-afferent input produces reflex muscle contractions at the input frequency. However, we observed that when two Ia monosynaptic reflex-afferent inputs are involved the periodic muscle contractions may occur at a frequency physically not present in the afferent inputs even when these inputs are sub-threshold. How can the muscles respond with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 102 1 شماره
صفحات -
تاریخ انتشار 2007